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ABSTRACT

To transform Mexico’s electric load infrastructure, accurate electric load forecasts are required, which are crucial to efficiently allocate resources, 
maintain system stability, and manage energy. The purpose of this study is to use the Quantile Transformer Network (QTN) as a novel approach for 
a deep learning framework for load forecasting, emphasizing its potential and practical consequences in enhancing the accuracy of load forecasting 
in real-world energy systems. Moreover, it is shown that QTN efficiently captures complex patterns, temporal relationships, and interconnections 
among factors that influence electric load. In this research it will be shown that the common Quantile Regression (QR) outperforms QTN in capturing 
dependencies in sequential data. The dataset utilized consists of past records of energy consumption in the Baja California System in Mexico. It 
includes several factors such as electricity demand, marginal prices, temporal characteristics, temperature-related variables, seasonal patterns, and 
holidays. Moreover, QTN is combined with the Rainbow Technique (RT) to manage categorical variables, resulting in the creation of a unified feature 
called category. RT examines the connections between descriptive phrases that reflect distinct combinations of categorical factors depending on the 
load values. Finally, several recommendations for promoting Mexico’s Electric Load Infrastructure are provided.

Keywords: Electric Load Forecasting, Quantile Transformer Network, Temporal Dependencies, Non-linear Patterns, Rainbow Technique, Quantile 
Regression 
JEL Classifications: Q41, Q42, C45, C53

1. INTRODUCTION

Following the decentralization of Mexico’s power market in 
2014, there has been a significant increase in the capacity 
of renewable energy. As of 2022, the total power generation 
capacity of environmentally friendly energy plants exceeded 
31,000 MW. This demonstrates a steady increase in capacity 
each year and highlights the country’s dedication to adopting 
sustainable energy practices (Dieck-Assad and Carbajal-Huerta, 
2017).

Accurate electrical load projections are vital in the dynamic field of 
energy forecasting, as they optimize resource allocation, improve 
grid stability, and facilitate efficient energy management. To 
address this difficulty, we introduce an innovative method in this 
study, where we use a newly constructed Quantile Transformer 

Network (QTN) to predict the electrical load in the Mexican Baja 
California Sur (BCS) system.

The QTN approach is an advanced deep learning architecture 
specifically developed to model the intricate correlations present 
in energy data. The QTN architecture utilizes deep neural networks 
to apply their computational capabilities in capturing complex 
relationships, temporal dependencies, and intricate interconnections 
among the different components that influence electric demand. 
This study aims to evaluate the efficacy of QTN by comparing its 
performance with that of Quantile Regression (QR), a commonly 
utilized technique in several domains for forecasting purposes.

The Mexican BCS system is an exemplary subject for a case 
study because of its distinctive attributes and difficulties. Given 
the varied climatic conditions and increasing energy demand in 
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the area, precise load forecasting is crucial for efficient resource 
planning, grid stability, and cost-effective power generation. One 
of the objectives of this investigation is to assess the effectiveness 
of QTN compared to QR in improving the accuracy of load 
forecasting and its practical consequences for the BCS system.

The main objective of this study is to provide a thorough examination 
of the QTN approach as it is used in electric load forecasting, 
emphasizing its superior performance in comparison to QR. Through 
a quantitative evaluation and comparison of the results produced 
from both techniques, our objective is to provide insights into the 
exceptional capabilities of the QTN framework and its potential to 
bring about a revolutionary change in the field of energy forecasting. 
This paper will provide several recommendations to enhance load 
forecasting techniques and facilitate the implementation of the QTN 
framework in practical energy systems. QTN uses deep learning to 
provide energy stakeholders with precise load estimates, allowing 
them to make well-informed decisions and maximize the operation 
of the Mexican BCS system.

The ways in which this research differs from the current literature 
are: (1) it extends the work of Jiotsop-Foze et al. (2024) by 
including QTN as a novel approach for a deep learning framework 
for load forecasting, (2) it shows that the ordinary QR outperforms 
QTN, (3) it provides a set of recommendation in energy policy to 
improve grid stability and efficient energy management.

This paper is organized in the following way: Section 2 offers 
an elaborate examination of the relevant literature and current 
forecasting approaches; section 3 presents a detailed explanation 
of the procedures for collecting data, preprocessing techniques, 
and the methodology used for load forecasting. This involves the 
utilization of QTN and QR; section 4 is dedicated to presenting 
and analyzing the outcomes of our trials, with a particular focus 
on highlighting the outstanding performance of the QTN model; 
section 5 provides a concise overview of the main findings 
analyzing their significance, provide a set of recommendation 
in energy policy, and propose prospective directions for future 
investigation.

2. A SHORT LITERATURE REVIEW

An extensive examination of the current body of literature 
on electric load forecasting algorithms uncovers a substantial 
amount of study and progress in the topic. This section presents 
a concise summary of the research in three important domains: 
QR, Transformer Networks (TN), and feature creation methods.

Transformer Neural Networks (TNN), which were first introduced 
in (2017) by Vaswani et al. are sophisticated deep learning models 
specifically built to handle sequential data processing tasks such as 
natural language processing and machine translation. Transformer 
models distinguish themselves from conventional recurrent 
neural networks (RNN) through the utilization of self-attention 
processes in place of recurrent connections. This allows them to 
effectively capture extensive dependencies across long distances. 
Transformers have demonstrated outstanding proficiency in 
diverse Natural Language Processing (NLP) tasks.

The essential elements of the transformers design, including the 
encoder, decoder, self-attention, and positional encoding, are 
crucial for its operation. The encoder transforms input sequences 
into encoded representations, while the decoder uses these 
representations to generate output sequences. The self-attention 
mechanism allows items in a sequence to selectively concentrate 
on other elements, therefore capturing interdependencies. 
Positional encoding provides positional context to the sequences.

Transformers have been integrated into well-known models such as 
Bidirectional Encoder Representations Transformers (BERT) and 
Generative Pre-trained Transformers (GPT). TNN excel in electric 
load forecasting by effectively identifying and understanding 
long-term relationships in time series data. Their self-attention 
processes exhibit exceptional efficacy in managing temporal 
interactions, resulting in remarkable outcomes. Multiple studies, 
such as those conducted by (Wang et al., 2022; Yao, et al., 2000; 
Khotanzad et al., 1995), and others, have examined the use of 
TNN in electric load forecasting. These studies have highlighted 
the networks’ ability to identify patterns over time and improve 
the accuracy of predictions.

Moreover, the literature also explores the topic of electric demand 
forecasting by employing LSTM models and other architectures 
such deep residual networks (ResNet). These models demonstrate 
the utilization of LSTM and ResNet in identifying crucial 
dependencies for load forecasting jobs. The use of meteorological 
data enhances the precision of these models. (Choi et al., 2018 and 
Jiao et al., 2018) have conducted research that specifically emphasize 
the effectiveness of these models in the field of load forecasting.

QR is a statistical method that allows for the estimate of different 
parts of the conditional distribution of a dependent variable, based 
on a given set of predictors. Unlike traditional regression models 
that focus on estimating the average value of the dependent 
variable, QR provides a comprehensive understanding of variable 
relationships by modeling and analyzing numerous quantiles of the 
dependent variable. This approach has attracted interest because 
it is robust against extreme values and data with heavy tails, it 
can model different quantiles, and it can effectively uncover non-
symmetrical correlations between predictors and the dependent 
variable (Huang, 2012).

Although there is limited literature specifically combining TNN 
with QR, there are research that explore the use of transformers 
for time series forecasting, which can be indirectly linked to QR. 
This research highlights the remarkable ability of transformers 
to identify relationships in sequential data. Salinas et al. (2019) 
utilized transformers to do time series forecasting, highlighting their 
ability to accurately identify long-term relationships and achieve 
exceptional outcomes. Furthermore, works conducted by Zhang 
et al. (2019) and He and Li (2018) have examined the capability 
of transformer-based architectures in predicting future events, 
emphasizing its effectiveness in capturing complex temporal 
patterns. Although the primary focus of these investigations is the 
application of transformers in time series forecasting, they offer 
valuable insights about the ability of transformers to effectively 
capture dependencies in sequential data.



Jiotsop-Foze, et al.: Transforming Mexico’s Electric Load Infrastructure: A Quantile Transformer Network Deep Learning Approach, 2019-2020

International Journal of Energy Economics and Policy | Vol 14 • Issue 5 • 2024 529

Furthermore, there are investigations that explore the utilization of 
QR in combination with several neural network structures, outside 
from the research on transformers. Choi et al. (2018) proposed 
combining LSTM-based recurrent neural networks with QR to 
anticipate integrated volatility in financial domains. In a similar 
manner, Jiao et al. (2018) introduced a Quantile Regression Neural 
Network (QRNN) that combines feedforward Neural Networks 
(NN) with QR, providing fast and accurate predictions for time 
series data. In their study, Huuskonen et al. (1997) utilized 
QRNN to make predictions about the water solubility of organic 
compounds3. Likewise Meinshausen (2006) proposed the concept 
of Quantile Regression Forests (QRF), which combines ideas from 
stochastic gradient boosting and random forests to perform QR. 
Furthermore, Rodrigues et al. (2016) proposed a sophisticated 
approach to QR that utilizes deep neural networks to accurately 
estimate conditional quantiles.

These publications offer valuable insights into the specific 
approaches employed in QR challenges using Neural Networks 
(NN). Additional investigation is required to examine the precise 
hybrid structure that combines transformers and QR, and to 
evaluate its efficacy in capturing the conditional quantiles of the 
response variable.

Feature creation methods are essential for enhancing the 
accuracy of load forecasting by extracting pertinent information 
or modifying the original characteristics. These strategies have 
been extensively investigated in numerous investigations that 
specifically examine load predictions. In this sense, Hong 
et al. (2014) explored techniques for generating features in load 
forecasting. They demonstrated their capacity to detect seasonal 
patterns, trends, and other important qualities that are naturally 
present in load data. Their findings supported the use of feature 
engineering techniques, such as Fourier analysis and wavelet 
decomposition, to extract meaningful features from the load data. 
Likewise, Gao et al. (2016) conducted additional research on 
feature generation in load forecasting, emphasizing the crucial 
role these methods play in improving the accuracy of forecasts. 
Their study presented a methodology for selecting and extracting 
features using principal component analysis (PCA) and empirical 
mode decomposition (EMD). The aim was to identify the inherent 
structure and patterns in the load data.

On the other hand, Tsanas and Xifara (2016) conducted a thorough 
evaluation of different techniques for generating features in 
the specific domain of load forecasting. Their comparative 
investigation encompassed methodologies such as Fourier 
analysis, wavelet decomposition, and statistical characteristics, 
assessing their impact on forecast accuracy. The study emphasized 
the importance of carefully choosing and designing characteristics 
to contain relevant information in load data.

These studies highlight the importance of feature generation 
approaches in load forecasting, emphasizing their ability to 
discover important load data features such as seasonal patterns 
and trends. Utilizing these techniques can enhance the precision 
of load forecasting models, guaranteeing more reliable predictions.

Finally, the increase in renewable energy generation is attributed 
to various factors, such as legislative incentives, technological 
progress, social transition towards sustainable energy sources and 
reduction of CO2 emissions. In particular, the attempt to reduce 
CO2 emissions has led to several measures related to the increase 
of renewable energy sources, requiring more accurate prediction 
of electrical load to maintain stability in the electrical system in 
the transition towards green energies (Alotaibi et al., 2020; Ruiz-
Alemán et al., 2023: Hussain et al., 2022; Mendoza-Rivera et al., 
2023; Wang et al., (2019); Salazar-Núñez et al., 2020; Salazar-
Núñez et al., 2022; Rathor and Saxena, 2020; Santillán-Salgado 
et al., 2020; Aslam et al., 2020; Aslam et al., 2021; and Valencia-
Herrera et al., 2020).

3. NATURE OF DATA

This section provides a concise summary of the dataset used in the 
study, which was acquired from the Baja California Sur region. 
The collection consists of historical data on power use for each 
hour, covering the period from January 01, 2019, to September 30, 
2020. The National Energy Control Center (CENACE, Spanish 
acronym of Centro Nacional de Control de la Energía) supplied the 
data for electric demand, specifically referred to as Total_Demand, 
and Local Marginal Price (PML).

Table 1 displays the details of the features employed in load 
forecasting, obtained from the BCS System Dataset. The table 
provides a comprehensive overview of the feature names, their 
corresponding data types, the quantity of values, and the distinct 
values associated with each feature.

The dataset comprises 15,336 observations, encompassing 
many elements pertaining to load forecasting. The variable 
Total_Demand represents the amount of electricity demanded in 
megawatt-hours (MWh) every hour. Another variable, Average_
Pml, represents the mean local marginal price (PML) for the 
relevant hour.

The dataset includes various nominal variables, specifically 
Day_week, Day_of_month, Month, Year, and Hour_of_day. 
The variable “Day_week” denotes the specific day of the week, 
ranging from Monday to Sunday. “Day_of_month” indicates 
the numerical day of the month, ranging from 1 to 31. “Month” 

Table 1: Features used in load forecasting from the BCS 
system dataset
Feature Data type Number of values Unique values
Total_Demand Real 15,336
Average_Pml Real 15,336
Day_week Nominal 7 7
Day_of_month Nominal 31 31
Month Nominal 12 12
Year Nominal  2
Hour_of_day Nominal 24 24
CDD Real 15,336
HDD Real 15,336
Season Binary 2 2
Holiday Binary 2 2
Own elaboration with electrical load data from the Baja California Sur (BCS) system
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signifies the specific month, ranging from January to December. 
“Year” represents the year, which can be either 2019 or 2020. 
Lastly, “Hour_of_day” denotes the specific hour of the day, 
ranging from 0 to 23.

In addition, the dataset contains two variables linked to 
temperature: CDD (Cooling Degree Days) and HDD (Heating 
Degree Days). CDD is the count of cooling degree days for the 
given hour, quantifying the amount of cooling needed during the 
summer months. HDD stands for heating degree days, which 
measures the amount of heating needed during winter months. 
These variables are frequently utilized in the energy sector to 
estimate energy demand and can be highly beneficial in energy 
planning, weather prediction, architectural design, and energy 
efficiency studies.

The dataset additionally contains two binary variables, Season 
and Holiday. The Season variable categorizes the hour as either 
part of the dry season (November to April) or the wet season 
(May to October). The Holiday variable indicates whether the 
day is a holiday or not. The dataset consists of 18 variables and 
15,335 observations in total. The data was partitioned into a 
training set and a test/validation set, employing an 80/20 ratio. 
The test/validation set has 3067 observations. This dataset offers 
a comprehensive and extensive collection of data for doing load 
forecasting analysis. It includes a wide range of elements such as 
power demand, marginal pricing, temporal aspects, temperature-
related variables, seasonality, and holiday effects.

4. RAINBOW TECHNIQUE (RT)

This section outlines the implementation of the Rainbow 
Technique (RT), which is used to handle categorical data and 
generate a unified feature known as category. The RT utilizes 
various categorical factors, including Day of the Week, Month, 
Season, Holiday, and Hour, to generate descriptive phrases that 
accurately depict their combinations. For example, a phrase could 
read “Tuesday January Low No one.”

In order to use the RT, we generate these phrases by merging the 
categorical variables. There are a total of 2537 distinct sentences in 

this feature. We determine the exact occurrence of each sentence, 
and the maximum occurrence is 20. From the sentences that occur 
most frequently, we can distinguish four unique ones: “Sunday 
March Low Holiday one,” “Thursday January Low Holiday one,” 
“Wednesday July High Holiday one,” and “Saturday August 
High Holiday one.” Subsequently, we examine the correlation 
between these statements and the load. Upon investigation, we 
ascertain that the phrase with the lowest load has a frequency of 
1 and corresponds to “Saturday April Low No one,” with a load of 
166.75 MW. This sentence is categorized as label 0. Conversely, 
the phrase “Tuesday August High Holiday seventeen” signifies 
the peak demand, achieving a load of 500.81 MW. The statement 
is repeated 8 times in the feature and is categorized as label 2536. 
In order to include the RT into our research, we generate a Python 
dictionary and combine it with the load data frame using the Pandas 
package. In addition, we investigate the correlation between load 
and various quantiles. Table 2 displays the load values for different 
quantiles, spanning from the 10th to the 90th percentiles. The load 
values corresponding to each quantile are as follows:

In addition, we examine the correlations between load and various 
characteristics. Table 3 displays correlation matrices for each 
quantile, focusing on the 10%, 30%, 50%, 70%, and 90% quantiles, 
as well as CDD, HDD, Average PML, and the Category feature 
obtained using the RT.

Based on the correlation matrices, it is evident that the Category feature 
created by the RT is the most significant feature for all quantiles, 
except for the 10% quantile. This emphasizes the significance of the 
Category characteristic in load forecasting analysis.

To summarize, the RT allows for the efficient modeling of 
categorical variables in a single feature, offering important insights 
into their correlation with the load. The category characteristic 
continuously exhibits significance across different quantiles, 
emphasizing its value for load forecasting analysis.

5. QUANTILE TRANSFORMER NETWORK 
(QTN)

The suggested design, named Transformer Model with Long Short-
Term Memory (LSTM) and Multi-Head Attention synergistically 
integrates the benefits of LSTM layers with a Multi-Head 
Attention mechanism, therefore augmenting the model’s capacity 
to represent information and its ability to generalize. Further 
enhancements are achieved by incorporating additional layers 
such as Dense, Dropout, and Layer Normalization.

In accordance with the conventional framework of a transformer 

Table 2: Load by quantiles
Load (MWh) Quantile (%)
209.38 10
252.34 30
286.53 50
347.92 70
419.13 90
Own elaboration with electrical load data from the BCS system

Table 3: Correlation matrices by quantile
Feature Load, quantile 10% Load, quantile 30% Load, quantile 50% Load, quantile 70% Load, quantile 90%
CDD 0 1 10 56 18
HDD −4 2 −6 −27 −2
Average PML 29 16 17 21 23
Category 11 28 28 58 60
Own elaboration with electrical load data from the Baja California Sur system
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model, the design substitutes the self-attention mechanism in 
the encoder with LSTM layers, proficiently capturing sequential 
dependencies. Subsequently, the output of the encoder undergoes a 
Multi-Head Attention layer, which allows the model to effectively 
capture interdependencies among the pieces in the sequence. 
Dense layers facilitate additional transformation. In order to get 
the intended result, the model compresses the processed output 
and feeds it through a decoder comprised of dense layers. This 
extensive metamorphosis guarantees meticulous analysis of the 
input sequence.

During the training process, a specialized loss function named 
“quantile_loss” is employed, and the model is optimized using 
the Adam optimizer. The training procedure encompasses crucial 
parameters, like batch size, number of epochs, validation split, and 
early stopping callbacks. The model is a subclass of tf.keras.Model 
and requires input parameters including input_shape, num_layers, 
d_model, num_heads, dff, and dropout_rate. The system comprises 
an encoder with LSTM layers, a Multi-Head Attention layer, 
dense_transform and dense1 layers for transformation, and dropout 
and layer normalization layers. The decoder consists of densely 
connected layers, and the call method performs the forward pass 
of the model. The architecture employs a bespoke model design 
that integrates LSTM layers, a Multi-Head Attention mechanism, 
and thick layers to effectively handle and forecast the incoming 
data. Below is an elaborate exposition of the architectural structure:
a. Encoder: The encoder is a sequential model implemented 

using the tf.keras library. The function Sequential (·) is called. 
The model comprises of two LSTM layers with d_model units 
and utilizes a ReLU activation function. The LSTM layers 
analyze the input sequence and generate sequences for each 
individual time step.

b. Transformer: The transformer layer is constructed utilizing 
layers. The function MultiHeadAttention (·) is called. The 
encoded sequence is used as both the query and the key. The 
num_heads option specifies the quantity of attention heads. 
The key_dim parameter determines the number of dimensions 
in the attention mechanism.

c. Dense transformation: Following the attention method, the 
output is fed into a dense layer (layers). Dense layer. The dense 
layer modifies the output of the attention mechanism. Dropout 
and Layer Normalization: Dropout layers (layers. Dropout(·)) 
are utilized to mitigate overfitting by applying them to the 
modified output. Layer normalization is a technique used 
to normalize the activations of individual layers in a neural 
network. The activations are normalized by applying Layer 
Normalization on the output.

d. Dense layers: The processed and standardized output is 
subsequently fed into a dense layer (layers.Dense(·)) with 
dff units and a ReLU activation function. Regularization is 
achieved by applying an additional dropout layer. The output 
undergoes layer normalization once again.

e. Flatten layer: The output is compressed using layers. Apply 
the Flatten (·) function to reformat it for the decoder.

f. Decoder: The decoder is a sequential model implemented 
using the tf.keras library. The function Sequential (·) is called. 

The architecture includes a compact layer with 512 units, a 
ReLU activation function, and L2 regularization. A dropout 
layer is utilized to implement regularization.

The number of units in the final dense layer is determined by the length 
of the quantiles array, which matches the desired output shape. The call 
(·) function does the forward pass of the model. The system processes 
the given inputs and carries out the required calculations. The input 
sequence is transmitted through the encoder, and the resulting output is 
utilized as both the query and key in the transformer layer. The output 
of the attention mechanism is subjected to a deep transformation layer. 
After applying dropout and layer normalization, the query tensor is 
reshaped to align with the dimensionality of X and then added to X. 
The output is subsequently propagated through the other levels until 
the ultimate output is achieved.

The model is constructed using a user-defined loss function named 
quantile_loss, which calculates the quantile loss based on the 
y_true and y_pred variables. The Adam optimizer is employed with 
a predetermined learning rate. The model is trained by utilizing 
the fit(·) function, which requires the training data (X_train and 
y_train) as input. Additional options encompass the batch size, 
epoch count, validation split, callbacks (e.g., early_stopping), and 
shuffle option. To summarize, the code establishes, builds, and 
trains a TransformerModel that adeptly integrates LSTM layers, 
Multi-Head Attention, and dense layers to efficiently interpret and 
forecast input data.

6. EXPERIMENTAL SETUP

This section outlines the experimental configuration and 
assessment criteria employed to measure the effectiveness of the 
QTN and conventional QR methods across five quantiles: 10%, 
30%, 50%, 70%, and 90%. In order to carry out QR, we employed 
the statsmodels package, which enables the fitting of distinct QR 
models for each specified quantile and gives model summaries 
for examination of the results.

The processed data frame comprises a single label, Demand, and 
four features: CDD, HDD, Average PML, and Category. In order 
to divide the dataset into training and testing sets, we adhered to 
a ratio of 80/20. The implementation of QR was carried out using 
the Statsmodels library. The QR estimations may be found in the 
Appendix part of this research. The average quantile loss for each 
model on the test set is shown in the QR column of Table 4.

Table 4 presents a juxtaposition of quantile loss values for 

Table 4: Quantile loss comparison
Quantile (%) QTN QR Relative difference (%)
10 5.01 39.00 −87
30 8.92 25.01 −64
50 8.11 21.50 −62
70 8.95 24.28 −63
90 6.37 34.34 −81
Own elaboration with electrical load data from the BCS system. QTN: Quantile 
transformer network
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various quantiles, comparing the QTN and QR techniques. 
The comparative disparity between the two techniques is also 
computed.

The important findings on the quantiles derived from various 
approaches are as follows:
a. The 10th percentile was 5.01 for the QTN and 39.00 for the 

QR. The relative difference is −87%, signifying that the QTN 
yielded a markedly lower value in comparison to the QR.

b. The QTN obtained a value of 8.92 at the 30th percentile, while 
the QR provides a value of 25.01. The QTN approach yielded 
a value that was 64% lower than the value obtained using the 
QR, as indicated by the relative difference.

c. The 50th percentile (median) was 8.11 for the QTN, and 21.50 
for the QR. The QTN approach yielded a value that was 62% 
lower than the value obtained using the QR, as indicated by 
the negative relative difference.

d. The QTN obtained a value of 8.95 at the 70th percentile, 
whereas the QR gives a value of 24.28. The QTN approach 
yielded a value that was 63% lower than the value obtained 
using the QR, as indicated by the negative relative difference.

e. The 90th percentile was 6.37 for the QTN, while the QR 
provides a score of 34.34. The relative disparity between the 
two approaches was −81%, suggesting that the QTN yielded 
a substantially lower value in comparison to the QR.

In summary, the findings indicate that the QTN consistently 
yielded lower values for each quantile in comparison to the QR. 
The relative discrepancies varied from −54% to −87%, suggesting 
a substantial discrepancy between the two techniques in predicting 
the quantiles.

7. CONCLUSION

Precise forecasts of electrical demand are crucial for optimizing 
resource distribution, ensuring grid stability, and facilitating 
efficient energy administration. The QTN presents a novel method 
for load forecasting. QTN surpasses conventional QR by capturing 
non-linear patterns, temporal dependencies, and interactions 
among elements that impact electric load.

Although QR offers a thorough comprehension of variable 
associations by modeling several quantiles of the response 
variable, there is a scarcity of research that integrates transformers 
with QR. Nevertheless, these investigations illustrate the 
exceptional efficacy of transformers in capturing interconnections 
among sequential data.

This study employs a dataset comprising historical energy usage 
statistics from the Baja California Sur region. The dataset includes 
factors such as power demand, marginal pricing, temporal aspects, 
temperature-related variables, seasonality, and holidays. The study 
uses the RT to manage categorical information and create a unified 
feature called category.

The RT combines category variables to generate descriptive 
phrases that depict their combinations. The technique effectively 
analyzes the links between sentences and the load by producing 

phrases that capture unique combinations of category factors in 
the dataset. Category labels are determined by load levels, and the 
Category feature produced by the RT shows a strong association 
with the load at various quantiles.

The paper intended to introduce and compare QTN, a deep 
learning architecture, with QR for load forecasting. Moreover, it 
demonstrates the efficacy of the RT in capturing the associations 
between categorical factors and the load. The results highlight 
the potential of QTN and its practical consequences, leading 
to enhanced accuracy in load forecasting for real-world energy 
systems.
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